REPORT NO. DOT-TSC-FAA-71-12

SIMULATION MODEL FOR THE CONVAIR CV-880 AND BOEING 720 B AIRCRAFT-AUTOPILOT SYSTEMS IN THE APPROACH CONFIGURATION

JOSEPH S. KOZIOL JR. TRANSPORTATION SYSTEMS CENTER 55 BROADWAY
CAMBRIDGE, MA. 02142

JULY 1971
PRELIMINARY MEMORANDUM

Prepared for
FAA/SRDS
800 INDEPENDENCE AVE. S. W.
WASHINGTON, D.C. 20590

> The contents of this report reflect the views of the Federal Aviation Administration which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

TABLE OF CONTENTS

PagexiLIST OF ABBREVIATIONS AND SYMBOLS1
INTRODUCTION 2
SECTION I. THE APPROACH MANEUVER 2
GENERAL 2
ALTITUDE AND HEADING HOLD 2
LOCALIZER CAPTURE 3
LOCALIZER TRACK 3
GLIDESLOPE CAPTURE. 3
GLIDESLOPE TRACK4
SECTION 2. ANALYTICAL MODEL OF ATRCRAFT 4
ASSUMPTIONS IN USING AIRCRAFT EQUATIONS 4
AIRCRAFT EQUATIONS OF MOTION. 8
BODY AXIS RATES AND VELOCITIES. 8
ACCELERATION EQUATIONS 10
TRAJECTORY EQUATIONS. 10
AIRCRAFT VELOCITY EQUATIONS 11
GROUND EFFECT 14
CONTROL SURFACE ACTUATORS15SECTION 3. CONVAIR CV-880 AIRCRAFT DATA
15
VEHICLE DESCRIPTION 20
AUTOPILOT DESCRIPTION 20
HEADING HOLD MODE 20
ALTITUDE HOLD MODE 20
LOCALIZER CAPTURE MODE. 24
LOCALIZER INITIAL TRACK MODE.
24
24
FINAL TRACK MODE. 24
GLIDESLOPE TRACK MODE
GLIDESLOPE TRACK MODE
27
SECTION 4. BOEING 720-B AIRCRAFT DATA 27
VEHICLE DESCRIPTION 40
AUTOPILOT DESCRIPTION 40
NON-SELECT MODE (PITCH AND ROLL ATTITUDE) 45
MANUAL. 45
LOCALIZER 46
ALTITUDE HOLD 46
GLIDESLOPE TRACK MODE48
REFERENCES

LIST OF ILLUSTRATIONS

Page
Figure5
2-12-2Aircraft Linearized Perturbation Equations. 5Initial Steady State and Disturbed StabilityAxesDefinition of Airplane Angles and Sign Conventions. 72-3Pressure Ratio36
4-5 -5High Pressure RPM, Percent37
4-6 Low Pressure Rotor RPM, Percent 38
4-7 Turbine Discharge Total Temperature 39
4-8 Fuel Flow LBS/HR. 40
4-9 Localizer Mode Block Diagram. 42
4-104-11Delineation of Axes9
Ground Proximity Effects of Coefficients 13
Three View Configuration of CV-880 Airplane 15
Block Diagram - Roll Axis 22
Block Diagram - Yaw Axis. 23
Block Diagram - Pitch Axis, Cruise Modes 24
Block Diagram - Pitch Axis, Glideslope. 26Block Diagram - Throttle System27
Boeing 720B Four-Engined Jet Transport. 28
Engine Mechanization 34
Thrust, Thousands of Pounds 35

LIST OF TABLES

Page
Table 3-1. Physical and Aerodynamic Characteristics CV-880 Aircraft in Trim Approach Condition. 16
Table 3-2. Major Dimensions of the CV-880 Aircraft 17
Table 3-3. $\begin{aligned} & \text { Longitudinal Nondimensional Stability } \\ & \text { Derivatives }\end{aligned}$

$\begin{array}{ll}\text { Table 3-4 } & \text { Lateral-Directional Nondimensional Stability } \\ \text { Derivatives • • • • • • • • • • • • }\end{array}$

$\begin{array}{ll}\text { Table 3-4 } & \text { Lateral-Directional Nondimensional Stability } \\ \text { Derivatives • • • • • • • • • • • • }\end{array}$ $\begin{array}{ll}\text { Table 3-4 } & \text { Lateral-Directional Nondimensional Stability } \\ \text { Derivatives • • • • • • • • • • • • }\end{array}$ $\begin{array}{ll}\text { Table 3-4 } & \text { Lateral-Directional Nondimensional Stability } \\ \text { Derivatives • • • • • • • • • • • • }\end{array}$ 19 19 18
Table 4-1. $\begin{aligned} & \text { Physical and Aerodynamic Characteristics } \\ & 720-\mathrm{B} \text { Aircraft }\end{aligned}$ 720-B Aircraft in Trim Approach Condition 29
Table 4-2. Major Dimensions of the 720-B Aircraft 30
Table 4-3. Longitudinal Nondimensional Stability
31
Table 4-4. Lateral-Directional Nondimensional Stability Derivatives 32
Table 4-5. Trim Ground Effect Parameters 33
Table 4-6. Mode Definition 45

Notation

LIST OF ABBREVIATIONS AND SYMBOLS

LIST OF ABBREVIATIONS AND SYMBOLS (CONT)

Notation	Side Force	
	Non-dimensional Side $\quad 1$	1/radian
$C_{y()}$	Stability Derivative	
	Center of Gravity of Airplane	feet/second ${ }^{2}$
cg	(${ }^{\text {a }}$ (2)	
	Acceleration fral	-
9	Ground Effect	
GE		feet
	Altitude	
h	,	
	Reference Axis	degrees
${ }^{1} \mathrm{pr}$	Ref Inertia about X, Y,	slug-feet ${ }^{2}$
$I_{x x}, I_{y y}{ }^{\prime} I_{z z}$	or Z axes	$\text { slug-feet }{ }^{2}$
	Aircraft Product of Inertia	
$I_{x z}$	Als Moment of Inertia	slug-feet ${ }^{2}$
$I_{e}{ }^{\prime} I_{a}{ }^{\prime} I_{r}$	Elevator (or Aileron or Rudder)	slug
	Ground Effect Factor	
K	Distance between $C g$ and Engine	feet
${ }^{\ell}$ E	Thrust Line in XZ plane	
	Mach. Number	slugs
M	Aircraft Mass	
m	Roll Rate About Reference	radians/second
p	Axis System	
	Pitch Rate About Reference	radians/second
q	Axis System	$\text { lbs/feet }{ }^{2}$
\bar{q}	Dynamic Pressure	s ${ }^{\text {c }}$
	Yaw Rate About Re	radians/second
r	System	feet ${ }^{2}$
	Wing Area	

LIST OF ABBREVIATIONS AND SYMBOLS (CONT)

Notation

S_{e}, S_{a}, S_{r}	Elevator Area (or Aileron or Rudder)	feet ${ }^{2}$
ΔT	Change in Propulsive Thrust	lbs
Uo	Steady State Forward Velocity	feet/second
U	Total Forward Velocity	feet/second
u	Perturbed Forward Velocity	feet/second
V	Total Lateral Velocity	feet/second
v	Perturbed Lateral Velocity	feet/second
V_{R}	True Airspeed	knots
$V_{\text {WIND }}$	Wind Velocity	feet/second
W	Total Normal Velocity	feet/second
w	Perturbed Normal Velocity	feet/second
$\mathrm{x}_{\text {accel }}$	Distance from Center of Gravity to Accelerometer Station	feet
α	Perturbed Angle of Attack with Respect to Stability Axis	radians
$\alpha_{\text {trim }}$	Trim Angle of Attack with Respect to Fuselage Reference Line	degrees
$\left.{ }^{(t r i m}\right)_{\text {GE }}$	Increase of Trim Angle of Attack Due to GE (with Respect to Fuselage Reference Line)	degrees
${ }^{\alpha} \mathrm{OL}$	Angle of Attack at Zero Lift (with Respect to Fuselage Reference Line)	degrees
β	Side Slip Angle	radians

LIST OF ABBREVIATIONS AND SYMBOLS (CONT)

Notation
$\delta_{e}, \delta_{a}, \delta_{r}, \delta_{s}, \delta_{f}$
$\delta_{t e}, \delta_{t a}, \delta_{t r}$
$\delta e_{s}, \delta a_{s}, \delta r_{s}$
γ_{0}
θ
Φ
Ψ
ρ
(\cdots)
Elevator Deflection (or Ailer-
on, Rudder, Spoiler or Flap) \quad radians

Subscripts
a
B
E
e
f
-
r
s

Aileron
Fuselage Reference Frame
Local Vertical Coordinate Frame
Elevator
Flaps
Equilibrium or Reference Condition
Rudder
Spoiler

INTRODUCTION

This report represents one of a series of tasks at the Transportation Systems Center to derive large jet transport models as part of an FAA project to develop a set of generalized equations of motion for aircraft in the approach and landing modes. The generalized simulation is then to be implemented in the National Aviation Facilities Experimental Center (NAFEC) hybrid computation facility, near Atlantic City, New Jersey, for all-weather landing studies.

This report describes the Convair CV880 and Boeing 720 B air-craft-autopilot systems in the approach configuration. The data for the Convair CV880 was supplied by the Service Technology Corporation (1) which has studied the aircraft quite thoroughly for other research projects. The data for the Boeing 720 B was supplied by NAFEC in three reports $(2,3,4)$. Unfortunately, the data from these reports is incomplete and in places inconsistent. Reference 2 is used as the primary source of information because it is the most recent and complete. Data not available from these references are noted, and are currently being obtained from the Boeing Company. The inaccuracies of the 720 B autopilot model presented are discussed in Section 4.

SECTION l. THE APPROACH MANEUVER

GENERAL
The approach maneuver, for purposes of this report, can be considered segmented into five phases:

1. Altitude and Heading Hold (up to approach point)
2. Localizer Capture
3. Localizer Track
4. Glideslope Capture
5. Glideslope Track

ALTITUDE AND HEADING HOLD

This phase provides control of the aircraft to selected headings and altitudes. Engagement of the Altitude and Heading Hold function will cause the aircraft to be maintained at the precise altitude and heading existing at engagement until a change in reference is introduced. This will direct the aircraft to the point of approach where the localizer portion of the ILS beam is intercepted. The ILS beam consists of a glideslope beam and a localizer beam which provide vertical and lateral steering signals respectively for approaches to the runway. Normally, the approach is defined as the phase beginning shortly before the aircraft crosses the boundary of the localizer beam. This is considered to be that angular distance (between 2 and 3 degrees depending upon the length of the runway) from the centerline of the beam. At the point of localizer interception, the aircraft is assumed to be flying straight and level at a heading around 45 degrees to the runway centerline. At this heading the aircraft is assured of a clean interception of the beam, yet does not have to make an excessive heading correction in order to align itself with the beam.

LOCALIZER CAPTURE

At some point after crossing the beam boundary, a capture maneuver is initiated. The point of initiation is a function of the logic built into the flight control system. The purpose of the capture maneuver is to align the heading of the aircraft (or more precisely the heading of the ground velocity vector) with that of the localizer beam while at the same time positioning the aircraft at the center of the localizer beam where the output of the receiver is zero. The capture maneuver is accomplished by performing a coordinated turn in the direction that reduces the difference between the heading of the aircraft and the heading of the beam. ("S" turns into the beam have been found to be undesirable.) At some point near the completion of the turn, the Localizer Track phase begins.

LOCALIZER TRACK

This phase may be divided into two sections (Initial Track and Final Track) according to the switching logic in the control system. The initial track begins at the completion of the localizer capture maneuver and continues until glideslope capture occurs. The control system will then normally switch from Initial Track to Final Track. This mode division will permit gain changes in the flight control system to achieve tighter control. During Localizer Track if the aircraft is subjected to a steady wind at right angles to the localizer beam, the flight control system will align the heading of the aircraft slightly up wind so that the resultant ground velocity vector is aligned with the beam.

GLIDESLOPE CAPTURE

At some point after crossing the boundary of the glideslope beam, the glideslope capture maneuver is initiated. The purpose of this maneuver is to align the pitch angle of the aircraft (or more precisely the flight path angle) with that of the glidesiope beam while at the same time positioning the aircraft at the center of the beam.

The capture maneuver is accomplished by performing a pitch over to the angle of the glideslope. At some point near the completion of the maneuver, the glideslope track phase begins.

GLIDESLOPE TRACK

The glideslope track phase begins at some point near the completion of the glideslope capture maneuver. During this phase the aircraft is controlled to track the center of the glideslope beam. This phase ends at the initiation of the flare maneuver which is not discussed in this report.

SECTION 2. ANALYTICAL MODEL OF AIRCRAFT

The approach model common for the Convair CV880 and Boeing 720 B aircraft, consists of rigid-body, six-degree-of-freedom aircraft perturbation equations referenced to the stability axis, body axis equations, Euler angle equations, trajectory equations and hinge moment equations. (See reference 5 for a derivation of these equations.)

All force and moment coefficients in the aircraft perturbation equations are evaluated at reference flight condition; their non-dimensional forms are usually referred to as the aircraft stability derivatives arising from their use in classical aircraft stability analysis. The stability derivatives together with trim aerodynamic quantities constitute the conventional characterization of the aircraft aerodynamics at the particular flight condition.

ASSUMPTIONS IN USING AIRCRAFT EQUATIONS
The derivation of the aircraft equations involved the following assumptions.

1. Aircraft mass is constant.
2. The earth can be considered an inertial frame.
3. The aircraft is a rigid body.
4. The aircraft is symmetrical about its $X-Z$ plane.
5. The aircraft is initially in symmetrical steady flight with no linear or angular accelerations, no angular rates, and no initial roll angle or lateral velocity.
6. Small disturbance (perturbation) theory is used. Motions and forces are referred to the equilibrium flight condition.

AIRCRAFT EQUATIONS OF MOTION

The linearized rigid-body, six-degree-of-freedom aircraft perturbation equations of motion, referenced to the stability axis system, are given in Figure 2-1. The stability axis system is an orthogonal set of axes fixed to the aircraft center of mass. These axes are adopted in this report because of their resulting simplifications in the equations of motion and aerodynamic force expressions. The initial steady state and disturbed stability axes are depicted in Figure 2-2. Airplane angles and sign conventions are described in Figure 2-3. The X-axis points in the direction of motion of the aircraft in a reference condition of steady symmetric flight. In this case, the reference values of sideslip velocity and normal velocity are zero. The y-axis is normal to the aircraft's plane of symmetry (positive to the right)

Longitudinal Equations

$$
\begin{aligned}
& -C_{L_{\delta_{e}}} \delta_{e}-C_{L_{\delta_{t}}} \delta_{t_{e}}-\frac{\left.\sin \left(\alpha_{t r r i m^{-i}}{ }_{\mathrm{pr}}\right)_{\Delta T-F}\left(C_{L}\right)_{G E}\right]}{\bar{q} S} \\
& \dot{q}=\frac{\bar{q} s \bar{c}}{I_{y y}}\left[\frac{c_{m_{u}}}{u_{0}}{ }_{u}+c_{m_{\alpha}} \alpha+\frac{c_{m_{\dot{\alpha}}} \bar{c}}{2 U_{o}} \dot{\alpha}+\frac{c_{m_{q}}}{2 U_{o}} q+c_{m_{\delta}} \delta_{e}+c_{m_{\delta_{t_{e}}}} \delta_{t_{e}}\right. \\
& \left.+\frac{c_{m_{\delta}} \dot{\bar{c}}}{2 U_{o}} \delta \dot{e}^{\ell}+\frac{{ }_{\mathrm{q}}}{} \mathrm{~S} \overline{\mathrm{c}} \Delta T+F\left(C_{m}\right)_{G E}\right]
\end{aligned}
$$

Lateral Equations
where $F=1$ when aircraft is in ground effect; zero otherwise

Figure 2-1. Aircraft Linearized Perturbation Equations

3. U_{0} IS THE INITIAL AIRCRAFT VELOCITY VECTOR DEFINING THE INITIAL POSITION OF THE STABILITY AXES.

Figure 2-2. Initial Steady State and Disturbed Stability Axes.

The trajectory equations are written with respect to an inertial frame (E) which is earth-fixed. This coordinate frame has its origin at the center of mass of the aircraft with the X-axis pointing North, the Y-axis pointing East and the Z-axis pointing down. The equations are as follows:

where $U=U_{o}+u(t)$

EULER ANGLES

The Euler angles are used to define the orientation of the vehicle with respect to a local vertical reference axis system. These angles are defined by an ordered sequence of three rotatrons (Ψ, θ, Φ) which rotates the local vertical reference frame into the body related stability axis system. The convention normally adopted for the Euler angles and rates is defined in figure 2-4.

The Euler angles are calculated by integrating the following equations from specified initial conditions.

$$
\dot{\theta}=q \cos \phi-r \sin \phi
$$

$$
\dot{\phi}=p+(q \sin \phi+r \cos \phi) \tan \theta
$$

$$
\dot{\psi}=(q \sin \phi+r \cos \phi) \sec \theta
$$

$$
\begin{aligned}
& \text { Aileron: } \quad \ddot{\delta}_{a}=\left[c_{h_{a_{3}}}{ }^{\beta}+c_{h_{a_{p}}} p+c_{h_{a_{\delta}}} \delta_{a}+c_{h_{a_{\delta}}} \delta_{t_{a}}+c_{h_{a_{\dot{~}}}} \dot{\delta}_{a}\right]\left[\bar{q} \frac{s_{a} c_{a}}{2 I_{a}}\right] \\
& \text { Rudder: } \quad \ddot{\delta}_{r}=\left[c_{h_{r_{\beta}}}{ }^{\beta}+c_{h_{r_{r}}} r+c_{h_{\mathbf{r}_{\delta_{r}}}} \delta_{r}+c_{h_{\mathbf{r}_{\delta_{t r}}}} \delta_{t_{r}}+c_{h_{r_{\delta_{r}}^{\prime}}} \delta_{r}-\left(\frac{2 I_{r}}{\bar{q} s_{r} c_{r}}\right) \dot{r}\right]\left[\bar{q} \frac{s_{r} c_{r}}{2 I_{r}}\right]
\end{aligned}
$$

The gearing arrangement of the tabs introduces motion of the tab in response to the motion of the control surface as well as the motion of the servo. The equations which express these relationships are:
CONVAIR CV-880 $\left\{\begin{array}{l}\delta_{t e}=\delta_{e}-\delta_{e_{s}} \\ \delta_{t a}=-\delta_{a_{s}} \\ \delta_{t r}=\delta_{r}-\delta_{r_{s}}\end{array} \quad\right.$ BOEING 720B $\quad\left\{\begin{array}{l}\delta_{t_{e}}=\delta_{e}-.416 \delta_{e_{s}} \\ \delta_{t_{a}}=\delta_{a}-.278 \delta_{a_{s}} \\ \delta_{r}=.263 \delta_{r_{s}}\end{array}\right.$
where $\delta_{e_{s}}, \delta_{a_{s}}, \delta_{r_{s}}$ are the elevator, aileron, and rudder servo outputs respectively.

GROUND EFFECT
An extraordinary aerodynamic perturbation occurs when the aircraft approaches close to the ground. In this situation the ground plane inhibits the normal downward-induced flow, increasing the lifting efficiency of the aircraft. Associated with this
effect is usually a nose-down pitching moment which reduces to some extent the gain in lifting efficiency. The ground proximity effects in the longitudinal axis will have significant influence on flare performance.

Ground effect can be approximated in the following stability derivatives as:

$$
\begin{aligned}
& C_{L_{\alpha}}=\left(C_{L_{\alpha}}\right)_{O G E}+K\left[\left(C_{L_{Q}}\right)_{I G E}-\left(C_{L_{\alpha}}\right)_{O G E}\right] \\
& C_{L_{q}}=\left(C_{L_{q}}\right)_{O G E}+K\left[\left(C_{L_{q}}\right)_{I G E}-\left(C_{L_{q}}\right)_{O G E}\right] \\
& C_{D_{\alpha}}=\left(C_{D_{\alpha}}\right)_{O G E}+k\left[\left(C_{D_{\alpha}}\right)_{I G E}-\left(C_{D_{\alpha}}\right)_{O G E}\right] \\
& C_{M_{q}}=\left(C_{M_{q}}\right)_{O G E}+k\left[\left(C_{M_{q}}\right)_{I G E}-\left(C_{M_{q}}\right)_{O G E}\right] \\
& c_{M_{\delta}}=\left(c_{M_{\delta_{e}}}\right)_{O G E}+K\left[\left(c_{M_{\delta_{e}}}\right)_{I G E}-\left(c_{M_{\delta_{e}}}\right)_{O G E}\right]
\end{aligned}
$$

where K may be represented as a function of altitude, and wing span as shown in Figure 2-5.

The changes in the trim values of lift, drag and pitching moment are calculated as follows:

$$
\begin{aligned}
& \left(C_{D}\right)_{G E}=k\left(\Delta C_{D}\right)_{G E} \\
& \left(C_{L}\right)_{G E}=k\left(\Delta C_{L}\right)_{G E} \\
& \left(C_{M}\right)_{G E}=k\left(\Delta C_{M}\right)_{G E}
\end{aligned}
$$

where $(\triangle C D) G E,(\triangle C L) G E$ and $(\triangle C M) G E$ are given directly for the Boeing 720B aircraft.

For the Convair CV880 aircraft, the trim values are calculated as follows:

SECTION 3. CONVAIR CV-880 AIRCRAFT DATA

VEHICLE DESCRIPTION

The Convair CV-880 Aircraft is four-engine, turbojet, low wing transport with all lifting surfaces swept back 35 degrees on the 30 percent chord line. The design gross take-off weight of the airplane is approximately 178,000 pounds which includes approximately 68,000 pounds of fuel contained in the integral fuel tanks located between the front and rear wing spars. The four General Electric engines are pod mounted and suspended below and forward of the wing on highly swept pylons. The CV- 880 configuration is shown in Figure 3-1.

All control surfaces are operated through servo-tabs with the exception of the spoilers which are hydraulically actuated. Lateral and directional trim is provided by tabs located on the aireron and rudder while longitudinal trim is provided by an all-movable horizontal tail. The spoilers, located on the wing upper surface, are used for both lateral control and as speed brakes. High lift type double-slotted flaps are incorporated in the wing trailing edge for use during take-off and landing. The nominal take-off flap setting is 20 degrees, while 50 degrees corresponds to the flap setting at landing. The speed brakes (spoilers) are automatically deflected 8 degrees when the flaps are extended to 50 degrees.

The aircraft trim data and parameter values are presented in Tables 3-1 through 3-4. (No engine thrust data is available.)

Figure 3-1 Three View Configuration of CV-880 Airplane

TABLE 3-1. PHYSICAL AND AERODYNAMIC CHARACTERISTICS CV-880 AIRCRAFT IN TRIM APPROACH CONDITION

Item	Value	Dimensions
Weight	155,000	Pounds
Mass (m)	4,845	Slugs
Center of Gravity Position (cg)	. 32	\% Mac
Moment of Inertia (I_{x})	1,510,000	Slug-Ft ${ }^{2}$
$\left(I_{Y}\right)$	2,650,000	Slug-Ft ${ }^{2}$
$\left(I_{z}\right)$	4,170,000	Slug-Ft ${ }^{2}$
$\left(I_{x z}\right)$	0	Slug-Ft ${ }^{2}$
Landing Gear Position	Extended	
Flap Position (δ_{f})	50	Degrees
Speed Brake Position (δ_{S})	8	Degrees
Altitude Condition (h_{CG})	Sea Level	Ft
Velocity (O_{0})	260	Ft/Sec
Air Density (0)	. 00238	Slugs/Ft ${ }^{3}$
Mach Number (M)	. 236	-
Dynamic Pressure (\bar{q})	82.5	$\mathrm{Lbs} / \mathrm{FF}^{2}$
Flight Path Angle (γ_{0})	0	Degrees
Angle of Zero Lift ($\alpha_{0 L}$)	-7.50	Degrees

TABLE 3-2. MAJOR DIMENSIONS OF THE CV-880 AIRCRAFT

Item	Value	Dimensions
Wing Area (s)	2000	$F t^{2}$
Wing Span (b)	118.32	Ft
Wing Mean Aerodynamic Chord ($\overline{\mathrm{c}}$)	18.94	Ft
Elevator Area (S_{e})	88.28	$F t^{2}$
Elevator Chord (C_{e})	2.66	Ft
Moment of Inertia of Elevator (I_{e})	33.60	Slug-Ft ${ }^{2}$
Rudder Area (S_{r})	82.44	$F t^{2}$
Rudder Chord (C_{r})	4.69	Ft
Moment of Inertia of Rudder (I_{r})	54.56	Slug-Ft ${ }^{2}$
Aileron Area (S_{a})	2x27.37	$F t^{2}$
Aileron Chord (C_{a})	2.96	Ft
Moment of Inertia of Aileron (I_{a})	2x19.11	Slug-Ft ${ }^{2}$
Mean Distance of Engine Thrust axis below CG (ℓ_{E})	1.0	Ft
```Incidence of Engine Thrust Axis (i```	0	Deg

TABLE 3-3. LONGITUDINAL NONDIMENSIONAL STABILITY DERIVATIVES
Longitudinal/Vertical Force Derivatives

$$
{ }^{\alpha_{\text {trim }}}
$$

$\mathrm{C}_{\mathrm{L}_{\text {trim }}}$
$C_{D_{\text {trim }}}$
$C^{L_{\alpha}}$
$C^{D_{\alpha}}$
$\mathrm{C}_{\mathrm{L}_{\mathrm{q}}}$
$\mathrm{C}_{\mathrm{L}_{\delta}}$
$C_{L_{\delta_{t}}}$

Value	
OGE*	IGE**
+4.20	+2.30
0.939	
0.1456	
4.62	5.51
6.395	6.571
0.215	
0.0538	

Pitching Moment Derivatives

$$
\mathrm{C}_{\mathrm{m}_{\alpha}}
$$

$C_{m_{\alpha}}$
$\mathrm{C}_{\mathrm{m}}$
$\mathrm{C}_{\mathrm{m}}^{\mathrm{q}}$
${ }^{C_{m_{j}}}$
$C_{m_{j}}$
$c_{m_{\delta_{e}}}$
$-0.381-.259$
$-4.23$

0
$-11.24 \quad-11.24$
-. 616
$-0.0186$
$-0.154$
$-0.042$
$-0.327$
$-0.020$
$-0.286$

TABLE 3-4. LATERAL-DIRECTIONAL NONDIMENSIONAT STABILITY DERIVATIVES

## $\begin{aligned} & \text { Side } \\ & C_{i}\end{aligned}$ <br> $C_{Y_{B}}$

$\mathrm{C}_{\mathrm{Y}_{\mathrm{r}}}$
${ }^{C} y_{\delta_{r}}$
0.2185
${ }^{C} y_{\delta_{t_{r}}}$
${ }^{C} y_{\delta_{s}}$
${ }^{C} y_{\delta_{a}}$
Value
-1.0150
0.386
0.0454
$-0.0780$

0

Yawing Moment Derivatives

$c_{n_{B}}$	0.1463
$c_{n_{r}}$	-0.2221
$C_{n_{P}}$	-0.0768
$c_{n_{\delta_{r}}}$	-0.0968
$c_{n_{\delta_{t}}}$	-0.01864
$C_{n_{\delta_{a}}}$	0.01862
$c_{n_{\delta}}$	0.0258

Rolling Moment Derivatives

$\mathrm{C}_{\ell}{ }_{\beta}$	-0.2360
$\mathrm{C}_{\ell}{ }_{\mathrm{r}}$	0.2807
$\mathrm{c}_{\ell}{ }_{\mathrm{P}}$	-0.3850
$c_{\ell_{\delta_{r}}}$	0.0231
$c_{\ell_{\delta_{1}}}$	. 00280
$c_{\ell_{\delta}}$	-0.0324
$\mathrm{C}_{\ell_{\delta_{t}}}$	-. 00468
$\mathrm{C}_{\ell_{\delta_{S}}}$	0.0782

TABLE 3-4 (CONT). LATERAL-DIRECTIONAL NONDIMENSIONAL STABILITY DERIVATIVES

Hinge Moment Derivatives	Value
	-0.2135
	-0.0732
C	-0.0131
	-0.2532
	-0.04025
$\mathrm{C}_{\mathrm{h}}$	-0.6070
	-0.2490
c	-0.0244
	-0.0140
	-0.0188
${ }^{n} a_{p}$	

## AUTOPILOT DESCRIPTION

This section presents a description of the Convair CV-880 autopilot for approaches as it has been simulated. This autopilot provides four axis of control - pitch, roll, yaw and speed control.

HEADING HOLD MODE
A block diagram of the heading hold mode configuration is illustrated in Figure 3-2. In this mode a reference or selected heading is maintained by commanding bank angle as a function of lagged heading select error. The bank angle is limited to $\pm 28$ degrees by a bank command (i.e. lagged heading select error) limiter. Bank angle error which commands roll rate, is in turn limited to $\pm 15 \mathrm{deg} / \mathrm{sec}$. (maximum allowable roll rate for structural considerations is approximately $45 \mathrm{deg} / \mathrm{sec}$. at all gross weights).

To force the aircraft to track the selected heading on a steady state basis, a low-gain integrator is used to supplement the lagged heading select error.

The roll axis is interlocked with the yaw axis in that operation of any roll axis mode requires engagement of the yaw stabilization system. A block diagram of the yaw axis during heading select operation is included in Figure 3-3. Washed-out yaw rate is used to command rudder tab deflection to provide dutch roll damping.

## ALTITUDE HOLD MODE

A block diagram of the altitude hold mode configuration is included in Figure 3-4. In this mode reference barometric altitude is maintained by commanding pitch attitude as a function of altitude error. The aircraft short period damping is augmented by washed-out pitch rate from the pitch rate gyro. A structural mode filter operates on the net elevator tab command signal to attenuate aircraft structural mode motions sensed by the pitch rate gyro (and normal accelerometer in other modes).

LOCALIZER CAPTURE MODE
A block diagram of the localizer capture mode is included in Figure 3-2. The localizer is captured when the absolute value of the algebraic sum of localizer output and 49 times the band-passed localizer output ( $49{ }^{\prime \prime} \mathrm{L}$ ) is less than 100 microamps $(\mu \mathrm{A})$. During this mode the sum of lagged course error and straight gain localizer provides a bank command (through a bank command limiter) to the bank angle error loop. The course error



Figure 3-3. Block Diagram - Yaw Axis.



Figure 3-4. Block Diagram ~ Pitch Axis, Cruise Modes.
signal, being proportional to lateral rate, provides lateral damping and the straight gain localizer signal provides lateral position information during beam acquisition in this mode.

The yaw axis configuration remains the same as during heading select operation (as shown in Figure 3-3).

## LOCALIZER INITIAL TRACK MODE

A block diagram of the localizer initial track mode is included in Figure 3-2. The control system will switch to the initial track mode when the bank angle is less than $\pm 6$ degrees and the localizer output is less than $73 \mu \mathrm{~A}$. In this mode the sum of straight gain localizer, integrated localizer and lagged course angle commands error bank angle to cause the aircraft to track the localizer. At the onset of initial track the localizer integrator output is reset to zero. The difference between this mode and capture is the addition of the localizer integrator which drives the localizer steady error to zero.

The yaw axis configuration remains the same as during heading select operation (as shown in Figure 3-3).

FINAL TRACK MODE
The final track mode is engaged when glideslope track occurs. The final track designation is used to denote the status of roll and yaw axes. The final track mode roll axis configuration is shown in Figure 3-2.

In this mode the bank command signal, $\phi_{C}$, is the sum of lagged bank angle, straight gain localizer, bandpassed localizer and integrated localizer signals. The localizer integrator output is reset to zero at the onset of final track. Lagged bank angle and bandpassed localizer constitute pseudo beam rate damping terms. The localizer integrator forces the localizer error to zero in the absence of windshear.

The yaw axis configuration for the final track mode is shown in Figure 3-3. In this mode the washed-out yaw rate is replaced by straight gain yaw rate feedback to achieve better dutch roll damping during final track.

GLIDESLOPE TRACK MODE
A block diagram of the glideslope track mode is included in Figure 3-5. In the glideslope track mode the elevator tab command signal is composed of the following:

Figure 3-5. Block Diagram - Pitch Axis, Glideslope.

## SECTION 4. BOEING 720-B AIRCRAFT DATA

VEHICLE DESCRIPTION
The Boeing 720-B aircraft is a four engine, low-wing, jet airliner with approximately $35^{\circ}$ sweep at 25 percent chord. The maximum take-off gross weight is 221,000 pounds which includes approximately 74,000 pounds of fuel. It is powered by four Pratt and Whitney turbojets mounted on pylons below the wing. A configuration of the $720-\mathrm{B}$ aircraft is shown in Figure 4-1.

Primary flight controls are operated through spring-tabs. Lateral control at low speeds is provided by outboard and small inboard ailerons supplemented by two hydraulically operated spoilers on each wing which are interconnected with the ailerons. At high speeds, lateral control is by inboard ailerons and spoilers only. Operations of the double-slotted flaps adjusts the linkage between the inboard and outboard ailerons to permit outboard operation only with extended flaps. With this condi. tion, only outboard aileron stability derivatives are given. Spoilers may be used symmetrically as speed brakes. Maximum flaps deflection is $50^{\circ}$

The aircraft trim data and parameter values are presented in Tables 4-1 through 4-5. The available engine thrust data is given in Figures 4-2 through 4-8.

1) Washed-out pitch rate for short period damping.
2) Highpassed normal acceleration for frequency augmentation.
3) Blended altitude rate to present an altitude rate command system to the glideslope signal.

During glideslope track, the net tab command signal goes through a structural mode filter to attenuate the structural mode motions sensed by the pitch rate gyro and the normal accelerometer.

The glideslope track mode is automatically engaged when the glideslope receiver output reduces to approximately $22 \mu \mathrm{~A}$. At approximately the same time the auto-throttle is manually engaged. A block diagram of the auto-throttle is shown in Figure 3-6. The auto-throttle uses washed-out pitch attitude and lagged airspeed error to position the throttles and control airspeed. The sum of washed-out attitude and lagged airspeed error positions the throttles through a proportional plus integral servo which forces the airspeed error to zero in steady state.

TABLE 4-1. PHYSICAL AND AERODYNAMIC CHARACTERISTICS 720-B AIRCRAFT IN TRIM APPROACH CONDITION


TABLE 4-2. MAJOR DIMENSIONS OF THE 720-B AIRCRAFT

Item		Value	Dimension
Wing area	(s)	2433	$F t^{2}$
Wing Span	(b) ,	130.83	Ft
Wing mean aerodynamic chord	( $\bar{C}$ )	20.16	Ft
Elevator area	( $S_{e}$ )	118	$F t^{2}$
Elevator chord	( $C_{e}$ )	2.72	Ft
Moment of inertia of elevator	$\left(I_{e}\right)$	(')	Slug-Ft ${ }^{2}$
Rudder area	$\left(S_{r}\right)$	102	$\mathrm{Ft}^{2}$
Rudder chord	$\left(C_{r}\right)$	(')	Ft
Moment of inertia or rudder	$\left(I_{r}\right)$	( ${ }^{\text {( }}$	Slug-Ft ${ }^{2}$
Aileron area (outboard)	$\left(S_{a}\right)$	2x19.4	$F t^{2}$
Aileron area (inboard)	$\left(S_{a}\right)$	2x39.8	$F t^{2}$
Aileron chord (outboard)	$\left(C_{a}\right)$	2.09	Ft
Aileron chord (inboard)	$\left(C_{a}\right)$	2.9	Ft
Moment of inertia of aileron	$\left(I_{a}\right)$	(')	Slug-Ft ${ }^{2}$
Mean distance of engine thrust axis below CG	( $e_{e}$ )	2.28	Ft
Incidence of engine thrust axis	$\left(i_{p r}\right)$	0	Degrees
(') Data not available			

TABLE 4-3. LONGITUDINAL NONDIMENSIONAL STABILITY DERIVATIVES Longitudinal/vertical Force Derivatives
OGE*
value
OGE* IGE**
$+6.3$
(')
1.31
.211
$\mathrm{C}_{\text {Derim }} \quad 5.04$
(')
$\mathrm{C}_{\mathrm{L}_{\alpha}}$
.598
(')
$C^{D_{\alpha}}$
$c_{L_{q}}$
${ }^{L_{L_{\delta}}}$
${ }^{c_{L_{\delta_{t_{e}}}}}$
Pitching Moment Derivatives
$-.963$
$c_{m_{\alpha}}$
$-4.84$
$-.005$
$c_{m_{u}}$
$\mathrm{C}_{\mathrm{m}}$
-13.5
(1)
(')
.229
(1)
$-.742$
(1)
(')
$c_{m_{t_{e}}}$
Longitudinal Hinge Moment Derivatives
$C^{h_{e}}{ }_{\alpha}$ $c_{h^{\prime}}{ }_{\delta_{e}}$ $c_{h^{\prime}}{ }_{\delta_{e}}$ $c_{h^{e}}{ }_{\delta_{t_{e}}}$
*OGE Out of Ground Effect
**IGE In Ground Effect

TABLE 4-4. LATERAL-DIRECTIONAL NONDIMENSIONAL STABILITY DERIVATIVES
Side Force Derivatives
.$_{y_{\beta}}$

$$
-1.04
$$

- 


Value

$$
.485
$$

$$
.226
$$

${ }^{c} y_{\delta_{t_{r}}}$	

- 

$$
\text { (included in } C_{y_{\delta_{r}}} \text { ) }
$$

(')
0
Yawing Moments Derivatives


Rolling Moment Derivatives

$$
\begin{gathered}
c_{\ell_{B}} \\
c_{\ell} c_{r} \\
c_{\ell_{p}} \\
c_{\ell_{\delta_{r}}} \\
c_{\ell_{\delta_{t_{r}}}} \\
c_{\ell_{\delta_{a}}} \\
c_{\ell_{\delta_{t_{a}}}}^{c_{\ell_{\delta_{s}}}}
\end{gathered}
$$

$$
-.272
$$

$$
.37
$$

$$
-.385
$$

$$
.032
$$

(')
$-.064$
.0114
.043
(') Data not available

TABLE 4-6. MODE DEFINITION

Localizer

Localizer, Alt. Hold

Localizer, Alt. Hold, GS AUTO

Attitude Hold (pitch and roll) control via attitude command switches which cause attitude command to change at a fixed rate.
Heading Hold (at engagement value) pitch attitude hold with control via pitch attitude command switch.

Heading and Altitude Hold (at engagement values).

Automatic tracking of the localizer beam.
Pitch attitude hold with control via pitch attitude command switch.
Automatic tracking of the localizer beam. Altitude hold at the engagement value.
Automatic tracking of the localizer beam.
Altitude hold at the engagement value until acquisition of the glide slope beam at which time glide slope tracking commences.
Automatic tracking of the localizer beam.
Glide slope tracking commences immediately upon selection of GS MAN.
Roll attitude hold with control via roll attitude command switch.
Glide slope tracking commences immediately upon selection of GS MAN.

In the yaw channel, dutch roll damping is augmented by using a washed-out yaw rate signal to command a rudder deflection. A MANUAL

Selection of the MANUAL mode affects the operation of the roll channel. The pitch and yaw channels are opera this mode the autopilot maintains the heading of the aircraft of the engagement value by commanding a bank angle as a function by a bank angle command imank angle is limited to $\pm 35$ degrees the desired heading on a long to force the aircraft to track is used to supplement the heading basis, a low-gain integrator of this mode is included in Figure 4-9. signal. A block diagram

Interlocking logic precludes the GS AUTO, or GS MAN modes when the MAN selection of the LOCALIZER, LOCALIZER

Selection of the LOCALIZER mode affects the operation of the roll channel. A block diagram of the LOCALIZER mode is included in Figure 4-9. Once selected the LOCALIZER mode can only be activated if the absolute value of the localizer error fied in Reference (2). preset constant whose value was not speciexceed this value, the LOCALIZER error signal subsequently activate. Since there seems heading or pseudo velocity) to be nothing in the system (either s-turn maneuver during localizer would prevent the undesirable capture must be performed by the capture, it is assumed that command switch or with the autopilot either with the roll has been captured, the pilot autopilot disengaged. After the beam to permit automatic beam tracking.

In this mode the sum of the straight gain localizer error, a preset course signal, and the integrated localizer error generate the bank angle command to cause the aircraft to track the localizer beam.

The integration of the localizer error signal is only permitted as long as the absolute value of the error is less than $\Gamma_{R}$ ( 0.267 degrees). The purpose of the preset course signal and its value are unclear. During this mode the bank angle command is limited to $\pm 30$ degrees by a bank angle command limiter until 60 seconds after the glide slope track mode is engaged at which time the limit level is reduced to $\pm 17$ degrees.

There seems to be no provision in the autopilot design for any type of path damping (lagged roll angle, heading error, or differentiated localizer error) which is necessary for system stability. It is assumed that some form of heading error is probably used to provide path damping although this was not apparent from the material in Reference (2).

A desensitization gain is included in the localizer error signal path. This gain decreases with decreasing altitude to counteract the effect of the incrpasing sensitivity of the localizer error signal as the aircraft approaches the localizer antenna.

## ALTITUDE HOLD

A block diagram of the altitude hold mode is included in Figure 4-10. In this mode the autopilot maintains the altitude of the aircraft (at the engagement value) by commanding a pitch attitude as a function of altitude error. The aircraft short period damping is augmented by a washed-out pitch rate signal. The aircraft is forced to track the engagement altitude in steady state by a low-gain integrator which operates on the altitude error. This same integrator is used during glideslope track as well as during altitude hold.

If the GS AUTO mode has also been selected, the autopilot will automatically switch to the GS track mode when the centerline of the glideslope beam is crossed. If the GS MAN mode is selected by the pilot while the system is in ALTITUDE HOLD, the autopilot will disengage altitude hold and engage the GS track mode.

## GLIDESLOPE TRACK MODE

The glideslope track mode can be engaged either automatically by selecting GS AUTO or manually by selecting GS MAN. If GS AUTO has been selected by the pilot, he must have also selected LOCALIZER for automatic activation of GS track. Generally ALTITUDE HOLD is also selected with GS AUTO. In this case, when the aircraft crosses the centerline of the glideslope beam, the GS track mode will automatically be activated and the altitude hold mode will be disengaged. If the pilot chooses to engage GS track manually, he may select GS MAN. In this case the GS track mode will be activated immediately and if it has been engaged the altitude hold mode will disengage.

In the GS track mode the elevator servo command is the sum of washed-out pitch rate, pitch angle, and straight gain and is used to augment the aircraft's short period damping. A Block diagram of the GS track mode is included in Figure.4-10.

During GS tract, the roll angle command signal is fed to the yaw channel to improve the localizer beam tracking
performance.

## REFERENCES

1. STC Document RPT-608, November 1970: Performance Evaluation of the Lateral Axis of a Conventional and an Inertially Augmented Automatic Landing System.
2. Hughes document 2732.50/147, April 1965: Transport Approach and Landing Simulator: Air , mic Data for the 720 B
3. Boeing Document D6-1154-7: Aerodynamic

Flight Simulator. (A suppl for Automatic Pilot
4. Boeing Document D6-9850:
Design, Boeing Model 720B
5. Etkin, B.: Dynamics of Flight. John Wiley \& Son.

